()

()

III Semester B.Sc. Examination, November/December 2015 (Semester Scheme) (2012 – 13 and Onwards) (CBCS/NS) PHYSICS – III Electricity and Magnetism

Time: 3 Hours Max. Marks: 70

Instruction: Answer any five questions from each Part.

PART – A

Answer any five questions. Each question carries eight marks. (5×8= 40)

1. State and prove super position theorem. 8

2. a) Discuss the force acting on a charge moving in a magnetic field.

b) Give the theory of ballistic galvanometer. (3+5)

3. a) State and explain Biot – Savart's law.

b) Derive an expression for magnetic field at a point near a straight conductor carrying current using Biot – Savart's law. (3+5)

- 4. a) State and prove Ampere circuital law.
 - b) Using Ampere circuital law, obtain an expression for magnetic field at the centre of a long solenoid carrying current. (4+4)
- 5. Derive an expression for decay of charge in CR circuit. Represent graphically.Define time constant.

P.T.O.

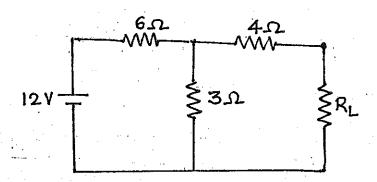
6. Derive Maxwell's field equations

$$\vec{\nabla} \cdot \vec{B} = 0 \ \ \text{and} \ \ \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \, . \ \text{Mention their physical significance}.$$

8

- 7. a) Define the terms average value and r.m.s. value of an alternating current.
 - b) Derive an expression for current in an a.c. circuit containing LCR in series.

(2+6)


- 8. a) Distinguish between Joule effect and Thomson effect.
 - b) Apply the principles of thermodynamics and arrive at the relation

$$\Pi = T \left[\frac{dE}{dT} \right]. \tag{3+5}$$

Solve any five problem. Each problem carries four marks.

 $(5 \times 4 = 20)$

9. In the network given below, find the current flowing through R_L using Thevenin's theorem if R_L = 5Ω .

10. A potential of 1 V is applied to a coil of resistance 4 Ω and self inductance of 4 H. What is the current after 0.1s?

- 11. Two identical circular coils of radius 0.1 m each having 20 turns are mounted axially 0.1 m apart. A current of 0.5 A is passed through both of them in the same direction. Find the magnetic field at the point mid way between both the coils.
- 12. The magnetic flux linked with a coil of resistance 10 Ω at any instant is given by $\phi = 5t^2 + 2t + 3$. Calculate the magnitude of induced emf and current in a time interval of 0.5 s.
- 13. In an L R circuit, the current attains $\binom{1}{3}$ of its final steady value in one second after the circuit is closed. What is the time constant of the circuit?
- 14. Find the value of constant 'C' for when yet A=i(x+3y)+j(y-2z)+k(x+cz) is solenoidal.
- 15. An inductance of 10 H is connected in series with a resistance of 50 Ω to a 220 V, 50 Hz a.c. source. Calculate the value of capacitor to be connected in series to make the power factor unity. Also, calculate the current in the circuit.
- 16. Calculate the neutral temperature and temperature of inversion of a thermocouple between 0°C and 100°C for which seebeck coefficients are

 $a = 20 \mu V/^{\circ}C$ and

 $b = -\,0.05\;\mu\;V/^{\circ}C^{2}$

PART-C

- Answer any five of the following questions. Each question carries two marks.
 (5×2=10)
 - a) Electric potential at a point due to a dipole is zero. Will electric intensity necessarily be zero? Explain.
 - b) A strong magnetic field applied to a stationary charge, will it experience a force? Explain.

§ 1

- c) The moment of inertia of a suspended part of B.G. is made large. Why?
- d) Why two coils are used in HTG instead of a single coil?
- e) Self inductance of a coil is also known as electrical inertia. Explain.
- f) It is possible to have only electric wave or magnetic wave propagating through space? Explain.
- g) A capacitor blocks d.c. but allows a.c. Explain.
- h) Does thermo electric effect obey the law of conservation of energy? Explain.

